Hardenize has joined Red Sift! Find out more in our blog post.
Web Security Overview
Supported and well configured
HTTPS

Web sites need to use encryption to help their visitors know they're in the right place, as well as provide confidentiality and content integrity. Sites that don't support HTTPS may expose sensitive data and have their pages modified and subverted.

For all sites VERY IMPORTANT medium EFFORT
Supported and well configured
HTTPS Redirection

To deploy HTTPS properly, web sites must redirect all unsafe (plaintext) traffic to the encrypted variant. This approach ensures that no sensitive data is exposed and that further security technologies can be activated.

For all sites VERY IMPORTANT low EFFORT
Not supported
HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is an HTTPS extension that instructs browsers to remember sites that use encryption and enforce strict security requirements. Without HSTS, active network attacks are easy to carry out.

For important sites VERY IMPORTANT medium EFFORT
Not supported
HSTS Preloaded

HSTS Preloading is informing browsers in advance about a site's use of HSTS, which means that strict security can be enforced even on the first visit. This approach provides best HTTPS security available today.

For important sites VERY IMPORTANT medium EFFORT
Supported and well configured
Content Security Policy

Content Security Policy (CSP) is an additional security layer that enables web sites to control browser behavior, creating a safety net that can counter attacks such as cross-site scripting.

For important sites IMPORTANT high EFFORT
Email Security Overview
Unable to determine
No SMTP servers

This host doesn't specify any SMTP servers, which probably means that it doesn't receive email. We are unable to evaluate STARTTLS support, TLS, X.509, and DANE configuration.


DNS Zone

The global DNS infrastructure is organized as a series of hierarchical DNS zones. The root zone hosts a number of global and country TLDs, which in turn host further zones that are delegated to their customers. Each organization that controls a zone can delegate parts of its namespace to other zones. In this test we perform detailed inspection of a DNS zone, but only if the host being tested matches the zone.

Test failed
We've detected serious problems that require your immediate attention.

Nameserver Names

Nameservers can be referred to by name and by address. In this section we show the names, which can appear in the NS records, the referrals from the parent zone, and the SOA record. In some situations, servers from the parent zone respond authoritatively, in which case we will include them in the list as well.

Nameserver Operational IPv4 IPv6 Sources
ns1.gnu.org. PRIMARY
192.99.37.66
2607:5300:60:4c42::1
The server is online. Name resolves to an IPv4 address. Name resolves to an IPv6 address. REFERRAL NS SOA
ns2.gnu.org.
192.99.35.98
2607:5300:60:4a62::1
The server is online. Name resolves to an IPv4 address. Name resolves to an IPv6 address. REFERRAL NS
ns3.gnu.org.
185.199.142.2
The server is not fully operational or refuses to serve this zone. Name resolves to an IPv4 address. Name doesn't resolve to an IPv6 address. NS
ns4.gnu.org.
188.165.235.157
2001:41d0:2:b69d::1
The server is online. Name resolves to an IPv4 address. Name resolves to an IPv6 address. REFERRAL NS

Nameserver Addresses

This section shows the configuration of all discovered nameservers by their IP address. To find all applicable nameservers, we inspect the parent zone nameservers for names and glue and then the tested zone nameservers for NS records. We then resolve all discovered names to IP addresses. Finally, we test each address individually.

Nameserver Operational Authoritative Recursive UDP TCP Sources Payload Size
185.199.142.2
ns3.gnu.org.
PTR: fsf0.ded.vikings.net.
The server is not fully operational or refuses to serve this zone. Nameservers did not respond authoritatively to all queries Nameserver doesn't provide recursive service No response to UDP queries No response to TCP queries NAME -
188.165.235.157
ns4.gnu.org.
PTR: ns4.gnu.org.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME 1232
192.99.35.98
ns2.gnu.org.
PTR: ns2.gnu.org.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME 1232
192.99.37.66 PRIMARY
ns1.gnu.org.
PTR: ns1.gnu.org.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME 1232
2001:41d0:2:b69d::1
ns4.gnu.org.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME 1232
2607:5300:60:4a62::1
ns2.gnu.org.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME 1232
2607:5300:60:4c42::1 PRIMARY
ns1.gnu.org.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME 1232

Start of Authority (SOA) Record

Start of Authority (SOA) records contain administrative information pertaining to one DNS zone, especially the configuration that's used for zone transfers between the primary nameserver and the secondaries. Only one SOA record should exist, with all nameservers providing the same information.

The domain name of the primary nameserver for the zone. Also known as MNAME.Primary nameserver ns1.gnu.org.
Email address of the persons responsible for this zone. Also known as RNAME.Admin email hostmaster.guix.gnu.org.
Zone serial or version number.Serial number 2021101432
The length of time secondary nameservers should wait before querying the primary for changes.Refresh interval 43,200 seconds (about 12 hours)
The length of time secondary nameservers should wait before querying an unresponsive primary again.Retry interval 900 seconds (about 15 minutes)
The length of time after which secondary nameservers should stop responding to queries for a zone, assuming no updates were obtained from the primary.Expire interval 1,209,600 seconds (about 14 days)
TTL for purposes of negative response caching. Negative cache TTL 3,600 seconds (about 1 hour)
Time To Live (TTL) indicates for how long a record remains valid. SOA record TTL 3,600 seconds (about 1 hour)

Analysis

Error
Nameserver is not operational
We were not able to obtain any valid responses from this nameserver. This means that the server is either offline, or that the DNS configuration is wrong. In the latter case, someone taking over control of this server could lead to nameserver takeover. Check if the IP address of the server is provided only via glue. In that case, the nameservers in the parent zone are misconfigured.

Address: 185.199.142.2

Reverse name: fsf0.ded.vikings.net.

Name: ns3.gnu.org.

Notice
Nameserver not in referrals
This nameserver appears in the NS records, but doesn't appear in any referrals from the parent zone nameservers.

Name: ns3.gnu.org.

Powerup!
Nameserver addresses should have reverse names
According to RFC 1912, having reverse DNS configuration in place for every nameserver is a best practice that maximizes the chances of correct DNS operation. Further, some anti-spam techniques use reverse name resolution to allow traffic.
Powerup!
Nameserver A and AAAA records should have matching reverse records
According to RFC 1912, nameserver's PTR records must match their A and AAAA records to ensure maximum interoperability.
Powerup!
Improve IPv6 support
The Internet is in a slow transition to supporting IPv6 widely. Although at this time it is expected that most recursive DNS servers will use IPv4, adding support for IPv6 will enable transition to networks that use IPv6 exclusively.

Backing DNS Queries

Below are all DNS queries we submitted during the zone inspection.

ID Server Transport Question Name Type Status

DNS Records

Correctly functioning name servers are necessary to hold and distribute information that's necessary for your domain name to operate correctly. Examples include converting names to IP addresses, determining where email should go, and so on. More recently, the DNS is being used to communicate email and other security policies.

Test passed
Everything seems to be well configured. Well done.

DNS Records

These are the results of individual DNS queries against your nameserver for common resource record types.

Name TTL Type Data
guix.gnu.org.     3600 A 185.233.100.56            
guix.gnu.org.     3600 AAAA 2a0c:e300:0:0:0:0:0:58            
guix.gnu.org.     3600 CAA 0 issuewild "awstrust.com"            
guix.gnu.org.     3600 CAA 0 issuewild "amazontrust.com"            
guix.gnu.org.     3600 CAA 0 issue "awstrust.com"            
guix.gnu.org.     3600 CAA 0 issue "letsencrypt.org"            
guix.gnu.org.     3600 CAA 0 issuewild "amazon.com"            
guix.gnu.org.     3600 CAA 0 issuewild "letsencrypt.org"            
guix.gnu.org.     3600 CAA 0 issue "amazontrust.com"            
guix.gnu.org.     3600 CAA 0 issue "amazon.com"            
guix.gnu.org.     3600 CAA 0 issuewild "amazonaws.com"            
guix.gnu.org.     3600 CAA 0 issue "amazonaws.com"            
guix.gnu.org.     3600 NS ns2.gnu.org.            
guix.gnu.org.     3600 NS ns4.gnu.org.            
guix.gnu.org.     3600 NS ns3.gnu.org.            
guix.gnu.org.     3600 NS ns1.gnu.org.            
guix.gnu.org.     3600 SOA ns1.gnu.org. hostmaster.guix.gnu.org. 2021101432 43200 900 1209600 3600            

Backing DNS Queries

Below are all DNS queries we submitted while inspecting the resource records.

ID Server Question Name Type Status

DNSSEC

DNSSEC is an extension of the DNS protocol that provides cryptographic assurance of the authenticity and integrity of responses; it's intended as a defense against network attackers who are able to manipulate DNS to redirect their victims to servers of their choice. DNSSEC is controversial, with the industry split largely between those who think it's essential and those who believe that it's problematic and unnecessary.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Useful DNSSEC Tools

Certification Authority Authorization

CAA (RFC 8659) is a new standard that allows domain name owners to restrict which CAs are allowed to issue certificates for their domains. This can help to reduce the chance of misissuance, either accidentally or maliciously. In September 2017, CAA became mandatory for CAs to implement.

Test passed
Everything seems to be well configured. Well done.

CAA Policy Information

The DNS hostname where this policy is located.Policy host guix.gnu.org
The issue property tag is used to request that certificate
issuers perform CAA issue restriction processing for the domain
and to grant authorization to specific certificate issuers.
issue
letsencrypt.org  flags: 0
The issue property tag is used to request that certificate
issuers perform CAA issue restriction processing for the domain
and to grant authorization to specific certificate issuers.
issue
amazonaws.com  flags: 0
The issuewild property has the same syntax and semantics as
the issue property except that issuewild properties only grant
authorization to issue certificates that specify a wildcard domain
and issuewild properties take precedence over issue properties when
specified.
issuewild
amazon.com  flags: 0
The issuewild property has the same syntax and semantics as
the issue property except that issuewild properties only grant
authorization to issue certificates that specify a wildcard domain
and issuewild properties take precedence over issue properties when
specified.
issuewild
awstrust.com  flags: 0
The issue property tag is used to request that certificate
issuers perform CAA issue restriction processing for the domain
and to grant authorization to specific certificate issuers.
issue
awstrust.com  flags: 0
The issue property tag is used to request that certificate
issuers perform CAA issue restriction processing for the domain
and to grant authorization to specific certificate issuers.
issue
amazontrust.com  flags: 0
The issue property tag is used to request that certificate
issuers perform CAA issue restriction processing for the domain
and to grant authorization to specific certificate issuers.
issue
amazon.com  flags: 0
The issuewild property has the same syntax and semantics as
the issue property except that issuewild properties only grant
authorization to issue certificates that specify a wildcard domain
and issuewild properties take precedence over issue properties when
specified.
issuewild
amazontrust.com  flags: 0
The issuewild property has the same syntax and semantics as
the issue property except that issuewild properties only grant
authorization to issue certificates that specify a wildcard domain
and issuewild properties take precedence over issue properties when
specified.
issuewild
letsencrypt.org  flags: 0
The issuewild property has the same syntax and semantics as
the issue property except that issuewild properties only grant
authorization to issue certificates that specify a wildcard domain
and issuewild properties take precedence over issue properties when
specified.
issuewild
amazonaws.com  flags: 0

Analysis

Powerup!
Issuance of S/MIME certificates not restricted
This policy doesn't restrict the issuance of S/MIME certificates. Consider using the `issuemail` directive to restrict which CAs, if any, can issue.
Powerup!
Issuance of BIMI not restricted
This policy doesn't restrict issuance of BIMI certificates. Consider using the `issuevmc` directive to restrict which CAs, if any, can issue.
Good
CAA policy restricts issuance
Great. This domain name uses CAA to restrict which CAs are allowed to issue certificates for it.
Powerup!
Policy doesn't use reporting
This policy doesn't use reporting, which means that there is no way to contact you when a violation is detected. The CAA RFC defines the iodef property that can be used for this purpose. Do note that you're not guaranteed to be notified, given that CAs generally don't support notifications yet.

Email (SMTP)

An internet hostname can be served by zero or more mail servers, as specified by MX (mail exchange) DNS resource records. Each server can further resolve to multiple IP addresses, for example to handle IPv4 and IPv6 clients. Thus, in practice, hosts that wish to receive email reliably are supported by many endpoint.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Analysis

Notice
This host doesn't have any MX servers and doesn't receive its own email
This host doesn't specify any MX servers. According to the SMTP specification, in that case it should be assumed that the host itself is willing to receive email. We have checked and that's not the case. This host should probably deploy a NULL MX (RFC 7505) to indicate that email is not wanted, but in practice it doesn't matter a great deal.

Email TLS (SMTP)

Transport Layer Security (TLS) is the most widely used encryption protocol on the Internet. In combination with valid certificates, servers can establish trusted communication channels even with users who have never visited them before. Network attackers can't uncover what is being communicated, even when they can see all the traffic.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Email Certificates (SMTP)

A certificate is a digital document that contains a public key, some information about the entity associated with it, and a digital signature from the certificate issuer. It’s a mechanism that enables us to exchange, store, and use public keys. Being able to reliably verify the identity of a remote server is crucial in order to achieve secure encrypted communication.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Email DANE (SMTP)

DNS-based Authentication of Named Entities (DANE) is a bridge between DNSSEC and TLS. In one possible scenario, DANE can be used for public key pinning, building on an existing publicly-trusted certificate. In another approach, it can be used to completely bypass the CA ecosystem and establish trust using DNSSEC alone.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

SPF

Sender Policy Framework (SPF) is a protocol that allows domain name owners to control which internet hosts are allowed to send email on their behalf. This simple mechanism can be used to reduce the effect of email spoofing and cut down on spam.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

DMARC

Domain-based Message Authentication, Reporting, and Conformance (DMARC) is a scalable mechanism by which a mail-originating organization can express domain-level policies and preferences for message validation, disposition, and reporting, that a mail-receiving organization can use to improve mail handling.

Test failed
We've detected serious problems that require your immediate attention.

DMARC Policy Information

The location from which we obtained this policy.Policy location _dmarc.gnu.org
DMARC version used by this policy.v DMARC1
Indicates the policy to be enacted by the receiver at
the request of the domain owner. Possible values are:
none, quarantine, and reject.
p
none
Addresses to which aggregate feedback is to be sent.rua mailto:dmarc-rua@fsf.org

Analysis

Info
DMARC policy found

Policy: v=DMARC1; p=none; rua=mailto:dmarc-rua@fsf.org

Host: _dmarc.gnu.org

Error
Invalid external destination
This policy uses an external report destination that is not authorized because the permission record doesn't exist. Please refer to RFC 7489, Section 7.1, for instructions how to correct this problem.

Expected permission record location: gnu.org._report._dmarc.fsf.org

External destination: mailto:dmarc-rua@fsf.org

Error
DMARC policy is invalid
Your DMARC policy is invalid.

MTA Strict Transport Security

SMTP Mail Transfer Agent Strict Transport Security (MTA-STS) is a mechanism enabling mail service providers to declare their ability to receive Transport Layer Security (TLS) secure SMTP connections, and to specify whether sending SMTP servers should refuse to deliver to MX hosts that do not offer TLS with a trusted server certificate.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

SMTP TLS Reporting

SMTP TLS Reporting (RFC 8460), or TLS-RPT for short, describes a reporting mechanism and format by which systems sending email can share statistics and specific information about potential failures with recipient domains. Recipient domains can then use this information to both detect potential attacks and diagnose unintentional misconfigurations. TLS-RPT can be used with DANE or MTA-STS.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

HTTP (80)

To observe your HTTP implementation, we submit a request to the homepage of your site on port 80, follow all redirections (even when they take us to other domain names), and record the returned HTTP headers.

Test passed
Everything seems to be well configured. Well done.

URL: http://guix.gnu.org/

1
http://guix.gnu.org/
HTTP/1.1 308 Permanent Redirect
2
https://guix.gnu.org/
HTTP/1.1 200 OK

Analysis

Good
HTTP redirects to HTTPS
Good. This plaintext HTTP server redirects to HTTPS.

HTTP (443)

To observe your HTTPS implementation, we submit a request to the homepage of your site on port 443, follow all redirections (even when they take us to other domain names), and record the returned HTTP headers. We use the most recent set of headers returned from the tested hostname for further tests such as HSTS and HPKP.

Test passed
Everything seems to be well configured. Well done.

URL: https://guix.gnu.org/

1
https://guix.gnu.org/
HTTP/1.1 200 OK

WWW TLS

Transport Layer Security (TLS) is the most widely used encryption protocol on the Internet. In combination with valid certificates, servers can establish trusted communication channels even with users who have never visited them before. Network attackers can't uncover what is being communicated, even when they can see all the traffic.

Test passed
Everything seems to be well configured. Well done.

TLS Configuration: guix.gnu.org (2a0c:e300:0:0:0:0:0:58)

Encryption protocol version determines what features are
available for negotiation between client and server.
Supported protocols
TLS v1.3
TLS v1.2
Servers should always enforce their own cipher
suite preference, as that is the only approach
that guarantees that the best possible suite is
selected.
Server suite preference
Shows cipher suite configuration for this protocol version.TLS v1.3
Server preference
Suite: TLS_AES_256_GCM_SHA384
Suite ID: 0x1302
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_AES_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_CHACHA20_POLY1305_SHA256
Suite ID: 0x1303
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_CHACHA20_POLY1305_SHA256
 256 bits (ECDHE 256 bits)
Suite: TLS_AES_128_GCM_SHA256
Suite ID: 0x1301
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_AES_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Shows cipher suite configuration for this protocol version.TLS v1.2
Server preference
Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0xc030
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0x9f
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA384
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
Suite ID: 0xcca8
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
Suite ID: 0xccaa
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 256 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CCM_8
Suite ID: 0xc0a3
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_256_CCM_8
 256 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CCM
Suite ID: 0xc09f
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_256_CCM
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
Suite ID: 0xc061
Cipher name: ARIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384
Suite ID: 0xc053
Cipher name: ARIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA384
TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0xc02f
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0x9e
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CCM_8
Suite ID: 0xc0a2
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_CCM_8
 128 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CCM
Suite ID: 0xc09e
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_CCM
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256
Suite ID: 0xc060
Cipher name: ARIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256
Suite ID: 0xc052
Cipher name: ARIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
Suite ID: 0xc028
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
Suite ID: 0x6b
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384
Suite ID: 0xc077
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
Suite ID: 0xc4
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
Suite ID: 0xc027
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
Suite ID: 0x67
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
Suite ID: 0xc076
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
Suite ID: 0xbe
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
Suite ID: 0xc014
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA
Suite ID: 0x39
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
 256 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
Suite ID: 0x88
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
Suite ID: 0xc013
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA
Suite ID: 0x33
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
 128 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
Suite ID: 0x45
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
 128 bits (DHE 2048 bits)
Suite: TLS_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0x9d
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA384
TLS_RSA_WITH_AES_256_GCM_SHA384
 256 bits
Suite: TLS_RSA_WITH_AES_256_CCM_8
Suite ID: 0xc0a1
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_256_CCM_8
 256 bits
Suite: TLS_RSA_WITH_AES_256_CCM
Suite ID: 0xc09d
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_256_CCM
 256 bits
Suite: TLS_RSA_WITH_ARIA_256_GCM_SHA384
Suite ID: 0xc051
Cipher name: ARIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA384
TLS_RSA_WITH_ARIA_256_GCM_SHA384
 256 bits
Suite: TLS_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0x9c
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256
 128 bits
Suite: TLS_RSA_WITH_AES_128_CCM_8
Suite ID: 0xc0a0
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_CCM_8
 128 bits
Suite: TLS_RSA_WITH_AES_128_CCM
Suite ID: 0xc09c
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_CCM
 128 bits
Suite: TLS_RSA_WITH_ARIA_128_GCM_SHA256
Suite ID: 0xc050
Cipher name: ARIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_ARIA_128_GCM_SHA256
 128 bits
Suite: TLS_RSA_WITH_AES_256_CBC_SHA256
Suite ID: 0x3d
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
 256 bits
Suite: TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
Suite ID: 0xc0
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
 256 bits
Suite: TLS_RSA_WITH_AES_128_CBC_SHA256
Suite ID: 0x3c
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256
 128 bits
Suite: TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
Suite ID: 0xba
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
 128 bits
Suite: TLS_RSA_WITH_AES_256_CBC_SHA
Suite ID: 0x35
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_AES_256_CBC_SHA
 256 bits
Suite: TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
Suite ID: 0x84
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
 256 bits
Suite: TLS_RSA_WITH_AES_128_CBC_SHA
Suite ID: 0x2f
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_AES_128_CBC_SHA
 128 bits
Suite: TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
Suite ID: 0x41
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
 128 bits

Analysis

Good
TLS 1.3 supported
Excellent. This server supports TLS 1.3, which is the latest revision of the TLS protocol and a significant improvement over earlier versions. Developed over a period of several years and extensively analyzed prior to the release, TLS 1.3 removed insecure features, and improved both security and performance.
Good
TLS 1.2 supported
Good. This server supports TLS 1.2, which can provide strong security when configured correctly. This version of the TLS protocol is necessary to provide good security with a wide range of clients that don't yet support TLS 1.3.
Good
Deprecated protocols not supported
Excellent. This server doesn't support any of the deprecated protocol (TLS 1.1 and earlier).
Good
Strong key exchange detected
Excellent. All cipher suites on this server rely on strong key exchange. The sweet spot is 2048 bits for DHE and 256 bits for ECDHE. Putting ECDHE suites first guarantees best security and best performance.
Good
Server prefers forward secrecy and authenticated encryption suites
Excellent. Not only does this server enforce its server preference, but it also has at the top of the list suites that support both forward secrecy and authenticated encryption. This is the best TLS 1.2 can offer.
Good
Server enforces cipher suite preferences
Excellent. This server enforces server cipher suite preference, which means that it is able to select the best suite from the options submitted by clients. Combined with a well-designed list of supported cipher suites, this setting enables negotiation of best security.
Good
All TLS connections with this server satisfy Apple's CT requirements
All TLS connections established with this server satisfy Chrome's CT requirements, using certificate, TLS extension, or OCSP response as SCT transport method.

SCT transports: CERT

Good
All TLS connections with this server satisfy Chrome's CT requirements
All TLS connections established with this server satisfy Chrome's CT requirements, using certificate, TLS extension, or OCSP response as SCT transport method.

SCT transports: CERT

Good
DHE server parameter not reused
This server does not reuse the private value used for the Diffie-Hellman key exchange.

TLS Configuration: guix.gnu.org (185.233.100.56)

Encryption protocol version determines what features are
available for negotiation between client and server.
Supported protocols
TLS v1.3
TLS v1.2
Servers should always enforce their own cipher
suite preference, as that is the only approach
that guarantees that the best possible suite is
selected.
Server suite preference
Shows cipher suite configuration for this protocol version.TLS v1.3
Server preference
Suite: TLS_AES_256_GCM_SHA384
Suite ID: 0x1302
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_AES_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_CHACHA20_POLY1305_SHA256
Suite ID: 0x1303
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_CHACHA20_POLY1305_SHA256
 256 bits (ECDHE 256 bits)
Suite: TLS_AES_128_GCM_SHA256
Suite ID: 0x1301
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_AES_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Shows cipher suite configuration for this protocol version.TLS v1.2
Server preference
Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0xc030
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0x9f
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA384
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
Suite ID: 0xcca8
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
Suite ID: 0xccaa
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 256 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CCM_8
Suite ID: 0xc0a3
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_256_CCM_8
 256 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CCM
Suite ID: 0xc09f
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_256_CCM
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
Suite ID: 0xc061
Cipher name: ARIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384
Suite ID: 0xc053
Cipher name: ARIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA384
TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0xc02f
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0x9e
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CCM_8
Suite ID: 0xc0a2
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_CCM_8
 128 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CCM
Suite ID: 0xc09e
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_CCM
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256
Suite ID: 0xc060
Cipher name: ARIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256
Suite ID: 0xc052
Cipher name: ARIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
Suite ID: 0xc028
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
Suite ID: 0x6b
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384
Suite ID: 0xc077
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
Suite ID: 0xc4
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
Suite ID: 0xc027
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
Suite ID: 0x67
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
Suite ID: 0xc076
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
Suite ID: 0xbe
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
Suite ID: 0xc014
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA
Suite ID: 0x39
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
 256 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
Suite ID: 0x88
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
 256 bits (DHE 2048 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
Suite ID: 0xc013
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 128 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA
Suite ID: 0x33
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
 128 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
Suite ID: 0x45
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
 128 bits (DHE 2048 bits)
Suite: TLS_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0x9d
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA384
TLS_RSA_WITH_AES_256_GCM_SHA384
 256 bits
Suite: TLS_RSA_WITH_AES_256_CCM_8
Suite ID: 0xc0a1
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_256_CCM_8
 256 bits
Suite: TLS_RSA_WITH_AES_256_CCM
Suite ID: 0xc09d
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_256_CCM
 256 bits
Suite: TLS_RSA_WITH_ARIA_256_GCM_SHA384
Suite ID: 0xc051
Cipher name: ARIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA384
TLS_RSA_WITH_ARIA_256_GCM_SHA384
 256 bits
Suite: TLS_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0x9c
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256
 128 bits
Suite: TLS_RSA_WITH_AES_128_CCM_8
Suite ID: 0xc0a0
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_CCM_8
 128 bits
Suite: TLS_RSA_WITH_AES_128_CCM
Suite ID: 0xc09c
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_CCM
 128 bits
Suite: TLS_RSA_WITH_ARIA_128_GCM_SHA256
Suite ID: 0xc050
Cipher name: ARIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_ARIA_128_GCM_SHA256
 128 bits
Suite: TLS_RSA_WITH_AES_256_CBC_SHA256
Suite ID: 0x3d
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
 256 bits
Suite: TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
Suite ID: 0xc0
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
 256 bits
Suite: TLS_RSA_WITH_AES_128_CBC_SHA256
Suite ID: 0x3c
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256
 128 bits
Suite: TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
Suite ID: 0xba
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA256
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
 128 bits
Suite: TLS_RSA_WITH_AES_256_CBC_SHA
Suite ID: 0x35
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_AES_256_CBC_SHA
 256 bits
Suite: TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
Suite ID: 0x84
Cipher name: CAMELLIA
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
 256 bits
Suite: TLS_RSA_WITH_AES_128_CBC_SHA
Suite ID: 0x2f
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_AES_128_CBC_SHA
 128 bits
Suite: TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
Suite ID: 0x41
Cipher name: CAMELLIA
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: CBC
Key exchange: RSA
Key exchange strength: 2048 bits
Forward secrecy: No (WEAK)
PRF: SHA
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
 128 bits

Analysis

Good
TLS 1.3 supported
Excellent. This server supports TLS 1.3, which is the latest revision of the TLS protocol and a significant improvement over earlier versions. Developed over a period of several years and extensively analyzed prior to the release, TLS 1.3 removed insecure features, and improved both security and performance.
Good
TLS 1.2 supported
Good. This server supports TLS 1.2, which can provide strong security when configured correctly. This version of the TLS protocol is necessary to provide good security with a wide range of clients that don't yet support TLS 1.3.
Good
Deprecated protocols not supported
Excellent. This server doesn't support any of the deprecated protocol (TLS 1.1 and earlier).
Good
Strong key exchange detected
Excellent. All cipher suites on this server rely on strong key exchange. The sweet spot is 2048 bits for DHE and 256 bits for ECDHE. Putting ECDHE suites first guarantees best security and best performance.
Good
Server prefers forward secrecy and authenticated encryption suites
Excellent. Not only does this server enforce its server preference, but it also has at the top of the list suites that support both forward secrecy and authenticated encryption. This is the best TLS 1.2 can offer.
Good
Server enforces cipher suite preferences
Excellent. This server enforces server cipher suite preference, which means that it is able to select the best suite from the options submitted by clients. Combined with a well-designed list of supported cipher suites, this setting enables negotiation of best security.
Good
All TLS connections with this server satisfy Apple's CT requirements
All TLS connections established with this server satisfy Chrome's CT requirements, using certificate, TLS extension, or OCSP response as SCT transport method.

SCT transports: CERT

Good
All TLS connections with this server satisfy Chrome's CT requirements
All TLS connections established with this server satisfy Chrome's CT requirements, using certificate, TLS extension, or OCSP response as SCT transport method.

SCT transports: CERT

Good
DHE server parameter not reused
This server does not reuse the private value used for the Diffie-Hellman key exchange.

WWW Certificates

A certificate is a digital document that contains a public key, some information about the entity associated with it, and a digital signature from the certificate issuer. It’s a mechanism that enables us to exchange, store, and use public keys. Being able to reliably verify the identity of a remote server is crucial in order to achieve secure encrypted communication.

Test passed
Everything seems to be well configured. Well done.

Certificate: guix.gnu.org

Leaf certificate guix.gnu.org
Issuer: Let's Encrypt
Not Before: 03 Mar 2025 12:57:56 UTC
Not After: 01 Jun 2025 12:57:55 UTC (expires in 2 months 21 days)
Key: RSA 2048 bits
Signature: SHA256withRSA
 View details

Analysis

Good
Strong private key
Good. The private key associated with this certificate is secure.
Good
Strong signature algorithm
Good. This certificate uses a strong signature algorithm.
Good
Certificate matches hostname
Good. The provided certificate matches the expected hostnames.
Good
Certificate dates match
Good. The certificate is valid for use at this point of time.
Good
Certificate has not been revoked
Good. This certificate has not been revoked.
Good
Certificate satisfies Apple's CT compliance requirements
Good. This certificate satisfies Apple's CT requirements at present.

Certificate Trust

Determining whether a certificate is considered valid is a complicated process that depends on the exact configuration of the validating party. For trust to be established, the certificate must form a chain that ends with a trusted root. In this section we evaluate the server's certificate against major root stores.

Platform Trusted
Apple
Google AOSP
Microsoft
Mozilla

Certificate Chain

For a server certificate to be valid, it must be presented as part of a complete and valid certificate chain. The last certificate in the chain should be the root and is usually not included in the configuration.

Leaf certificate
guix.gnu.org | d63c282
Not After: 01 Jun 2025 12:57:55 UTC (expires in 2 months 21 days)
Authentication: RSA 2048 bits (SHA256withRSA)
 View details
Intermediate certificate
R11 | 591e9ce
Not After: 12 Mar 2027 23:59:59 UTC (expires in 2 years 2 days)
Authentication: RSA 2048 bits (SHA256withRSA)
 View details
Root certificate
ISRG Root X1 | 96bcec0
Not After: 04 Jun 2035 11:04:38 UTC (expires in 10 years 2 months)
Authentication: RSA 4096 bits (SHA256withRSA)
 View details

Analysis

Good
Certificate chain is correct
Good. This chain contains all the right certificates and in the right order.

DANE (443)

DNS-based Authentication of Named Entities (DANE) is a bridge between DNSSEC and TLS. In one possible scenario, DANE can be used for public key pinning, building on an existing publicly-trusted certificate. In another approach, it can be used to completely bypass the CA ecosystem and establish trust using DNSSEC alone.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Cookies

Cookies are small chunks of text that are sent between your browser and a website. They are often essential to the operation of the site and sometimes contain sensitive information. Session cookies sent from secure sites must be explicitly marked as secure to prevent being obtained by active network attackers.

Test passed
Everything seems to be well configured. Well done.

HTML Content

On virtually all web sites, HTML markup, images, style sheets, JavaScript, and other page resources arrive not only over multiple connections but possibly from multiple servers and sites spread across the entire Internet. For a page to be properly encrypted, it’s necessary that all the content is retrieved over HTTPS. In practice, that’s very often not the case, leading to mixed content security problems.

Test passed
Everything seems to be well configured. Well done.

Encryption of Embedded Resources

In this section we look at the transport security of all embedded resources. Mixed active content occurs when there are unprotected scripts or styles embedded in a page. This is typically not allowed by modern browsers. Mixed passive content (images, videos and such) are typically allowed, but shouldn't be present.

0 script(s)
  0 out of 0 are secure
10 CSS file(s)
  10 out of 10 are secure  View all
16 media file(s)
  16 out of 16 are secure  View all

Encryption of Outbound Links

Ideally, an encrypted page should only have links that lead to other encrypted pages. If plaintext links are used, passive network attackers can see where people go after they visit your web site. It's also possible that some sensitive information is leaked in the Referer header.

13 link(s)
  13 out of 13 are encrypted  View all

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) vastly improves security of the network encryption layer. With HSTS enabled, browsers no longer allow clicking through certificate warnings errors, which are typically trivial to exploit. Additionally, they will no longer submit insecure (plaintext) requests to the site in question, even if asked.

Test passed, but there are warnings
Some aspect of your site's configuration require your attention.

HSTS Policy

URL from which this policy was obtained.Location https://guix.gnu.org/

Analysis

Good
Apex policy activated on every page visit
The homepage of this web site contains a link to a resource on the apex hostname. This approach will ensure that, whenever HSTS is activated on the main site, it's activated on the apex hostname too.

Resource URL: https://gnu.org/manual/

HSTS Policy  Apex host

URL from which this policy was obtained.Location https://gnu.org
Specifies policy duration. Once activated, HSTS stays in force
until this time lapses. Browsers update policy cache duration
every time they receive a new HSTS header from a site.
max‑age
63,072,000 seconds (about 2 years)
When present, this directive forces HSTS activation
on allsubdomains. For best security, HSTS should be
deployed on the bare domain name (e.g., example.com)
and all its subdomains.
includeSubDomains
Presence of this directive indicates that a web site wishes to
permanently use HSTS and that its policy information should be
preloaded (embedded in browsers).
preload

Analysis

Good
Policy is valid
OK. Your HSTS policy uses correct syntax.
Good
Long policy age
Your HSTS policy has a long max-age value, which offers better protection.
Good
Policy covers subdomains
When subdomains are included, network attackers are unable to manufacture arbitrary subdomains to manipulate cookies and trick users.
Good
Preload intent declared
Good. With the preload directive set, browsers have a green light to embed the HSTS policy.
Warning
Missing redirection
This host uses HSTS, but doesn't have a redirection from HTTP on port 80 to HTTPS on port 443. As a result, clients who visit the plaintext host won't notice and activate HSTS.

Starting point: http://gnu.org

Current redirection: http://www.gnu.org/

Expected redirection: https://gnu.org

Warning
Policy not preloaded
When hostname is preloaded, that means that browsers embed your HSTS policy and apply it even to the first request sent to your web site. This server indicates preloading in its policy, but the domain name isn't actually preloaded. We classify this as a warning because it's a common problem to place the 'preload' keyword in the policy even though the infrastructure is not ready for preloading. This is dangerous because, in this situation, anyone can submit this domain name for preloading just by visiting hstspreload.org. We recommend that you either preload this domain name yourself—if it's ready—or remove the preloading indicator from the policy until it is ready.
Warning
Preload policy doesn't satisfy preload requirements
This HSTS policy specifies the preload directive but doesn't satisfy one or more preload conditions.

Analysis

Powerup!
Deploy HSTS on this host
This host doesn't use HSTS, which means that its users can be easily attacked via MITM attacks. Consider deploying HSTS to disable certificate warnings and increase content and cookie security.
Warning
Policy set on plaintext port
HSTS policies must not be transmitted over insecure channels.

Location: http://gnu.org

HTTP Public Key Pinning

HTTP Public Key Pinning (HPKP) enables site operators to restrict which certificates are considered valid for their domain names. With a valid HPKP configuration, sites can defeat man in the middle (MITM) attacks using fraudulent or misissued certificates. HPKP is an advanced feature, suitable for use by only high-profile web sites.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Content Security Policy

Content Security Policy (CSP) is a security mechanism that allows web sites control how browsers process their pages. In essence, sites can restrict what types of resources are loaded and from where. CSP policies can be used to defend against cross-site scripting, prevent mixed content issues, as well as report violations for investigation.

Test passed
Everything seems to be well configured. Well done.

Content-Security-Policy

frame-ancestors 'none'  

Analysis

Powerup!
Mixed content not blocked
This CSP policy doesn't use any of the directives designed to handle mixed content. Consider using the 'block-all-mixed-content' and 'upgrade-insecure-requests' directives as appropriate to ensure that no mixed content is allowed.
Powerup!
Form targets not restricted
The 'form-action' directive is not explicitly set. Because this directive doesn't fall back to default sources, this means that all targets are allowed.

Analysis

Info
CSP policy detected

Header: Content-Security-Policy

Value: frame-ancestors 'none'

Location: https://guix.gnu.org/

Subresource Integrity

Subresource Integrity (SRI) is a new standard that enables browsers to verify the integrity of embedded page resources (e.g., scripts and stylesheets) when they are loaded from third-party web sites. With SRI deployed, remote resources can be used safely, without fear of them being modified by malicious parties.

Test passed
Everything seems to be well configured. Well done.
No external scripts
  SRI not needed
10 CSS file(s)
  10 out of 10 are secure  View all

Analysis

Good
No remote resources
The homepage of this site doesn't contain any remote resources so SRI is not needed.

Expect CT

Expect-CT is a deprecated response HTTP header designed to enable web sites to monitor problems related to their Certificate Transparency (CT) compliance. Should any CT issues arise, browsers that supported this header will submit reports to the specified reporting endpoint. Chrome was the browser that introduced support for this response header, but later deprecated it and removed it in version 107.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Analysis

Powerup!
Deploy Expect-CT to enable reporting
An Expect-CT policy enables web sites to monitor for any problems related to their Expect-CT compliance, detecting potentially serious issues quickly. When issues arise, compliant browsers will submit reports to the specified reporting endpoints. Before CT became required for all public certificates the Expect-CT was also used to require CT, but that use case no longer applies.

Frame Options

The X-Frame-Options header controls page framing, which occurs when a page is incorporated into some other page, possibly on a different site. If framing is allowed, attackers can employ clever tricks to make victims perform arbitrary actions on your site; they do this by showing their web site while forwarding the victim's clicks to yours.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

XSS Protection

Some browsers ship with so-called XSS Auditors, built-in defenses against XSS. Although these defenses work against simple reflective XSS attacks, they can be abused by skillful attackers to add weaknesses to otherwise secure web sites. These dangers are present in both filtering and blocking modes. At this time, the Safari browser ships with its XSS defenses enabled by default. For this reason, the best approach is to explicitly disable this functionality.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Analysis

Powerup!
Explicitly disable browser XSS protection
For best security, every web site should explicitly disable browser-based XSS protection. This is because this type of functionality can be used to introduce vulnerabilities into otherwise error-free web sites.

Content Type Options

Some browsers use a technique called content sniffing to override response MIME types provided by HTTP servers and interpret responses as something else (usually HTML). This behavior, which could potentially lead to security issues, should be disabled by attaching an X-Content-Type-Options header to all responses.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.